

ÁGAR FERRO KLIGLER

IDENTIFICAÇÃO DE ENTEROBACTÉRIAS

USO

O Ágar Ferro Kligler permite a identificação de *Enterobacteriaceae*, demonstrando rapidamente a fermentação de lactose e glicose (com ou sem produção de gás), bem como a produção de sulfeto de hidrogênio.

HISTÓRIA

Em 1911, Russell descreveu um meio de dois açúcares para o isolamento de bacilos da tifo de urina.

Seis anos depois, Kligler desenvolveu um meio nutriente com glicose, indicador de Andrade e acetato de chumbo para a diferenciação de bactérias dos grupos Typhi e Paratyphi. Ao fazer experiências com esse meio com outras combinações de ingredientes, Kligler descobriu que o meio de Russell, com indicador de Andrade e acetato de chumbo, fornecia excelente diferenciação de *Salmonella*.

Posteriormente, Bailey e Lacey defenderam o uso do vermelho de fenol como indicador de pH, que substituiu o indicador de Andrade, menos adequado para esse tipo de reação.

Sulkin e Willett usaram tiossulfato de sódio e sulfato ferroso para demonstrar a produção de sulfeto de hidrogênio.

PRINCÍPIOS

As fermentações da lactose e da glicose, que permitem a diferenciação das *Enterobacteriaceae*, resultam na acidificação que torna o vermelho de fenol amarelo (indicador de pH).

Os microrganismos que fermentam a glicose, mas não a lactose (*Salmonella* ou *Shigella*), produzem inicialmente um declive amarelo devido à acidificação obtida pela fermentação da glicose presente em pequenas quantidades. Quando a glicose é totalmente utilizada no ambiente aeróbio, a reação torna-se alcalina pela oxidação dos ácidos produzidos, resultando no aparecimento de uma coloração vermelha na superfície. Esta alcalinização não aparece profundamente no *pellet*, onde a coloração permanece amarela.

Os microrganismos que fermentam a lactose e a glicose fazem com que o declive e o *pellet* fiquem amarelos com uma alta produção de ácido, o que é suficiente para manter um pH ácido na superfície.

Os microrganismos que não fermentam nenhum dos dois carboidratos não alteram a cor do meio

A produção de H_2S se manifesta no *pellet* pelo aparecimento de uma coloração preta de sulfeto de ferro, que é devido à redução do tiossulfato na presença de citrato férrico.

A produção de gás (H_2, CO_2) , resultante das fermentações de açucares, resulta no aparecimento de bolhas ou na fragmentação do ágar.

COMPOSIÇÃO TÍPICA

(A composição pode ser ajustada para obter um desempenho ideal).

-	Extrato de levedura autolítica	3,0 g
-	Extrato de carne	3,0 g
-	Glicose	1,0 g
-	Lactose	10,0 g
-	Cloreto de Sódio	5,0 g
-	Tiossulfato de sódio	0,5 g
-	Citrato férrico amoniacal	0,5 g
-	Vermelho de fenol	25,0 mg
-	Ágar bacteriológico	15,0 g

pH do meio pronto a usar a 25°C: 7,4 ± 0,2.

PREPARAÇÃO

- Suspender 58,0 g de meio desidratado (BK034) em 1 litro de água destilada ou desmineralizada.

- Lentamente, leve o meio para ferver com agitação constante até sua completa dissolução.

- Distribuir em tubos.

- Esterilizar em autoclave a 121°C por 15 minutos.

 Inclinar os tubos de modo a obter uma base de 3 cm de altura e um declive. - Reconstituição:
58,0 g/L
- Esterilização:
15 min a 121°C

INSTRUÇÃO DE USO

- Retirar uma colônia de um meio de isolamento seletivo, inocular na superfície inclinada por estrias.
- É necessário usar culturas puras retiradas do centro das colônias bem isolado, caso contrário, as reações cruzadas tornam impossível identificar o microrganismo.
- Incubar a 37°C por 24 horas, com a tampa meia-rosca, de modo a promover troca gasosa.

- Semeando:

Picada central e estrias em superfície - Incubação:

Incubação:24 h a 37°C

RESULTADO

O Meio Ferro Kligler fornece quatro informações principais:

Fermentação de glicose:

- Base vermelha: glicose não fermentada.
- Base amarela: glicose fermentada.

Fermentação de lactose:

- Inclinação vermelha: lactose não fermentada.
- Inclinação amarela: lactose fermentada.

Produção de gás:

Aparecimento de bolhas de gás na base.

Formação de H₂S:

- Produção de uma coloração preta entre o *pellet* e a inclinação ou ao longo da picada.

As reações típicas obtidas são apresentadas na tabela a seguir:

Espécie	Fermentação da lactose	Fermentação da glicose	Produção de gás	Formação de H₂S
0 / " - 1:	ua lactose	ua giicose	ue yas	ue n ₂ S
Salmonella Typhi (2)	-	+	-	+
Salmonella Paratyphi A (2)	-	+	+	-
Salmonella Choleraesuis (2)	-	+	+	-
Salmonella Pullorum (2)	-	+	+	+
Salmonella Paratyphi B (2)	-	+	+	+
Salmonella Typhimurium (2)	-	+	+	+
Salmonella Enteritidis (2)	-	+	+	+
Salmonella Gallinarum (2)	-	+	-	+
Shigella dysenteriae	-	+	_	-
Shigella flexneri	-	+	-	-
Shigella sonnei	-	+	-	-
Shigella boydii	-	+	-	-
Proteus vulgaris	-	+	[+]	+
Proteus mirabilis	-	+	+	+
Proteus morganii	-	+	+	_
Proteus rettgeri	-	+		
Serratia marcescens	-	+	_	_

Espécie	Fermentação da lactose	Fermentação da glicose	Produção de gás	Formação de H₂S
Enterobacter hafniae	-	+	+	-
Enterobacter aerogenes	+	+	+	-
Enterobacter cloacae	+	+	+	-
Escherichia coli (1)	+	+	+	-
Citrobacter freundii	+	+	+	+
Klebsiella pneumoniae	+	+	+	-
Alcaligenes faecalis	-	-	-	-
Pseudomonas aeruginosa	-	-	-	-
Yersinia enterocolitica	-	-	-	-

⁽¹⁾ Algumas cepas de Escherichia coli não fermentam a lactose.

CONTROLE DE QUALIDADE

Meio desidratado: pó rosa e homogêneo. **Meio preparado:** ágar vermelho-laranja.

Resultado do cultivo após 24 horas de incubação a 37°C:

Microrganismos	Crescimento	Fermentação da lactose	Fermentaçã o da glicose	Formação de H₂S	Produção de gás
Escherichia coli WDCM 00179	Bom	+	+	-	+
Pseudomonas					
aeruginosa WDCM 00026	Bom	-	-	-	-

ARMAZENAMENTO / VALIDADE DE PRATELEIRA

Meio desidratado: 2-30°C.

A data de validade é mencionada no rótulo.

Nota: Quando o meio não é usado dentro de 8 dias de preparação, é recomendado regenerar em banho-maria e solidificar novamente na posição correta.

⁽²⁾ Se a interpretação sugerir a presença de *Salmonella*, é possível realizar, a partir de culturas em Meio Ferro de Kligler, a detecção de β-galactosidase, urease e lisina-descarboxilase.

APRESENTAÇÃO

Meio desidratado: Frasco de 500 g BK034HA

REFERÊNCIAS BIBLIOGRÁFICAS

Russel, F.F. 1911. The isolation of typhoid bacilli from urine and feces with the description of a new double sugar tube medium. J. Med. Red. Res., **25**: 217-229.

Kligler, I.J. 1917. A simple medium for the differentiation of the members of the typhoid-paratyphoid group. American Journal of Public Health, 7: 1042-1044.

Kligler, I.J. 1918. Modifications of culture media used in the isolation and differentiation of typhoid, dysentery, and allied bacilli. Journal of Experimental Medicine, **28**: 319-322.

Buttiaux, R. 1951. L'Analyse bactériologique des eaux de consommation. Editions médicales Flammarion, Paris.

Buttiaux, R., Beerens, H., et Tacquet, A. 1962. Manuel de techniques bactériologiques. Editions médicales Flammarion, Paris.

NF U47-100. Juillet 2007. Méthodes d'analyse en santé animale. Recherche par l'isolement et identification de tout sérovar ou de sérovar(s) spécifié(s) de salmonelles dans l'environnement des productions animales.

NF U47-101. Novembre 2007. Méthodes d'analyse en santé animale. Isolement et identification de tout sérovar ou de sérovar(s) spécifié(s) de salmonelles chez les oiseaux.

NF U47-102. Janvier 2008. Méthodes d'analyse en santé animale. Isolement et identification de tout sérovar ou de sérovar(s) spécifié(s) de salmonelles chez les mammifères.

OUTRAS INFORMAÇÕES

As declarações feitas nas etiquetas têm precedência sobre as fórmulas ou instruções descritas neste documento e estão sujeitos a alterações a qualquer momento sem aviso prévio.

Código do documento: KLIGLER_FR_V11.

Data de criação: 04-2001 Data de revisão: 01-2018 Motivo da revisão: Bibliografia.